E content for students of patliputra university

B. Sc. (Honrs) Part 1Paper 1

Subject Mathematics

Title/Heading of topic:Theory of equations

(fundamental theorem of algebra)

By Dr. Hari kant singh

Associate professor in mathematics

1 Theory of equations

1.1. Polynomial Functions

Definition:

A function defined by

 $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$, where $a_o \neq 0$, n is a non negative integer and a_i (i = 0, 1...,n) are fixed complex numbers is called a **polynomial** of **degree** n in x. Then numbers a_o, a_1, \dots, a_n are called the **coefficients** of f.

If α is a complex number such that $f(\alpha)=0$, then α is called **zero** of the polynomial.

1.1.1 Theorem (Fundamental Theorem of Algebra)

Every polynomial function of degree $n \ge 1$ has at least one zero. Remark:

Fundamental theorem of algebra says that, if $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$,

where $a_0 \neq 0$ is the given polynomial of degree $n \geq 1$, then there exists a complex number α such that $a_0\alpha^n + a_1\alpha^{n-1} + \dots + a_n = 0$.

We use the Fundamental Theorem of Algebra, to prove the following result.

1.1.2 Theorem

Every polynomial of degree n has n and only n zeroes.

Proof:

Let $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$, where $a_o \neq 0$, be a polynomial of degree $n \geq 1$. By fundamental theorem of algebra, f(x) has at least one zero, let α_1 be that zero. Then $(x - \alpha_1)$ is a factor of f(x).

Therefore, we can write:

 $f(x) = (x - \alpha_1)Q_1(x)$, where $Q_1(x)$ is a polynomial function of degree n - 1. If $n - 1 \ge 1$, again by Fundamental Theorem of Algebra, $Q_1(x)$ has at least one zero, say α_2 .

Therefore, $f(x) = (x - \alpha_1)(x - \alpha_2)Q_2(x)$ where $Q_2(x)$ is a polynomial function of degree n - 2.

Repeating the above arguments, we get

 $f(x) = (x - \alpha_1)(x - \alpha_2)....(x - \alpha_n)Q_n(x)$, where $Q_n(x)$ is a polynomial function of degree n - n = 0, i.e., $Q_n(x)$ is a constant.

Equating the coefficient of x^n on both sides of the above equation, we get $Q_n(x) = a_o$.

Therefore, $f(x) = a_o(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n)$.

If α is any number other than $\alpha_1, \alpha_2,, \alpha_n$, then $f(x) \neq 0 \Rightarrow \alpha$ is not a zero of f(x). Hence f(x) has n and only n zeros, namely $\alpha_1, \alpha_2,, \alpha_n$.

Note:

Let $f(x) = a_o x^n + a_1 x^{n-1} + ... + a_n$; $a_o \ne 0$ be an nth degree polynomial in x.

Then,
$$a_o x^n + a_1 x^{n-1} + ... + a_n = 0$$
 ----- (1)

is called a polynomial equation in x of degree n.

A number α is called a **root** of the equation (1) if α is a zero of the polynomial f(x).

So theorem (1.1.2)can also be stated as: "Every polynomial equation of degree n has n and only n roots".

1.1.3 Theorem

If the equation $a_o x^n + a_1 x^{n-1} + + a_n = 0$, where a_o, a_1, a_n are real numbers $(a_o \neq 0)$, has a complex root $\alpha + i\beta$, then it also has a complex root $\alpha - i\beta$. (i.e., complex roots occur in conjugate pairs for a polynomial equation with real coefficients).

Proof:

Let
$$f(x) = a_0 x^n + a_1 x^{n-1} + + a_n, a_0 \neq 0$$

Given that $\alpha + i\beta$ is a root of f(x) = 0.

Consider
$$(x - (\alpha + i\beta)(x - (\alpha - i\beta)) = (x - \alpha)^2 + \beta^2$$
.

Divide
$$f(x)$$
 by $(x-\alpha)^2 + \beta^2$.

Let Q(x) be the quotient and Ax + B be the remainder.

Then,
$$f(x) = \left[(x - \alpha)^2 + \beta^2 \right] Q(x) + Ax + B$$
$$= \left[(x - (\alpha + i\beta))(x - (\alpha - i\beta)) \right] Q(x) + Ax + B$$
$$\Rightarrow f(\alpha + i\beta) = 0 + A(\alpha + i\beta) + B = A(\alpha + i\beta) + B = (A\alpha + B) + iA\beta$$

Equating real and imaginary parts, we see that $A\alpha + B = 0$ and $A\beta = 0$

But
$$\beta \neq 0 \implies A = 0$$
 and so $B = 0$

 \Rightarrow The remainder Ax + B is zero. i.e., $[(x-(\alpha+i\beta))(x-(\alpha-i\beta))]$ is a factor of f(x) i.e., $\alpha-i\beta$ is a root of f(x)=0.

1.1.4. Theorem

But $f(\alpha + i\beta) = 0$.

In an equation with rational coefficients, the roots which are quadratic surds occur in conjugate pairs.

Proof:

Let $f(x) = a_o x^n + a_1 x^{n-1} + ... + a_n, a_o \neq 0$, be an nth degree polynomial with rational coefficients.

Let
$$\alpha + \sqrt{\beta}$$
 is a root of $f(x) = 0$.

Divide
$$f(x)$$
 by $\left[(x - (\alpha + \sqrt{\beta}))(x - (\alpha - \sqrt{\beta})) \right] = (x - \alpha)^2 - \beta$.

Let Q(x) be the quotient and Ax + B be the remainder.

Proceeding exactly as in the above theorem, we get Ax + B = 0.

Thus we conclude that $\alpha - \sqrt{\beta}$ is also a root of f(x) = 0.

1.1.5. Theorem

If the rational number p/q, a fraction in its lowest terms (so that p, q are integers prime to each other, $q \neq 0$) is a root of the equation $a_o x^n + a_1 x^{n-1} \dots + a_n = 0$ where a_0, a_1, \dots, a_n are integers and $a_o \neq 0$, then p is a divisor of a_n and q is a divisor of a_o .

Proof:

Since $\frac{p}{q}$ is a root the given polynomial equation, we have

$$a_o \left(\frac{p}{q} \right)^n + a_1 \left(\frac{p}{q} \right)^{n-1} + \dots + a_{n-1} \left(\frac{p}{q} \right) + a_n = 0$$

Multiplying by qn , we get

$$a_{0}p^{n} + a_{1}p^{n-1}q + \dots + a_{n-1}pq^{n-1} + a_{n}q^{n} = 0$$
 -----(1)

Dividing by p, we have

$$a_{o}p^{n-1} + a_{1}p^{n-2}q + ... + a_{n-1}q^{n-1} = \frac{-a_{n}q^{n}}{p}$$

Now, the left side of the above equation is an integer and therefore $\frac{-a_nq^n}{p}$ is also must be an integer. Since p and q have no common factor, p must be a divisor of a_n .

Also, from (1),

$$a_1 p^{n-1} q + \dots + a_{n-1} p q^{n-1} + a_n q^n = -a_o p^n$$

Dividing this expression by q, we get

$$a_1 p^{n-1} + \dots + a_{n-1} p q^{n-2} + a_n q^{n-1} = \frac{-a_0 p^n}{q}$$

Since the left side is an integer and since q does not divide p, q must be a divisor of a_0 . This completes the proof.

Corollary

Every rational root of the equation $x^n + a_1 x^{n-1} + + a_n = 0$, where each a_i is an integer must be an integer.

Moreover, every such root must be a divisor of the constant a_n .

Proof:

This follows from the above theorem, by putting $a_0 = 1$.

Multiple Roots

If a root α of f(x) = 0 repeats r times, then α is called an r-multiple root.

A 2- multiple root is usually called a double root.

For example, consider $f(x) = (x - 2)^3 (x - 5)^2 (x + 1)$.

Here 2 is a 3 - multiple root, 5 is a double root, and -1 is a single root of the equation f(x) = 0.

1.1.6. Theorem

If α is an r - multiple root of f(x) = 0 then α is an (r-1) multiple root of $f^1(x) = 0$, where $f^1(x)$ is the derivative of f(x).

Proof:

Given that α is an r - multiple root of f(x) = 0.

Then $f(x) = (x - \alpha)^r \phi(x)$ where $\phi(\alpha) \neq 0$.

Now, by applying product rule of differentiation, we obtain:

$$f^{1}(x) = (x - \alpha)^{r} \phi^{1}(x) + \phi(x) \quad r.(x - \alpha)^{r-1}$$
$$= (x - \alpha)^{r-1} [(x - \alpha)\phi^{1}(x) + r\phi(x)]$$

When $x = \alpha$, $(x - \alpha)\phi^{1}(x) + r\phi(x) = r\phi(\alpha) \neq 0$ $\Rightarrow \alpha$ is an (r - 1) multiple root of $f^{1}(x) = 0$.

Remark:

If α is an (r-1)-multiple root of $f^1(x) = 0$, similarly as above, we can see that α will be an (r-2) multiple root of $f^{11}(x) = 0$; (r-3) - multiple root of $f^{111}(x) = 0$, and so on.

5

Solved Problems

1. Solve $x^4 - 4x^2 + 8x + 35 = 0$, given $2 + i\sqrt{3}$ is a root.

Solution:

Given that $2+i\sqrt{3}$ is a root of $x^4-4x^2+8x+35=0$; since complex roots occurs in conjugate pairs $2-i\sqrt{3}$ is also a root of it.

 $\Rightarrow [x-(2+i\sqrt{3})][x-(2-i\sqrt{3})] = (x-2)^2 + 3 = x^2 - 4x + 7$ is a factor of the given polynomial.

Dividing the given polynomial by this factor, we obtain the other factor as $x^2 + 4x + 5$.

The roots of
$$x^2 + 4x + 5 = 0$$
 are given by $\frac{-4 \pm \sqrt{16 - 20}}{2} = -2 \pm i$.

Hence the roots of the given polynomial are $2+i\sqrt{3}$, $2-i\sqrt{3}$, -2+i and -2-i.

2. Solve $x^4 - 5x^3 + 4x^2 + 8x - 8 = 0$, given that one of the roots is $1 - \sqrt{5}$.

Solution:

Since quadratic surds occur in conjugate pairs as roots of a polynomial equation, $1+\sqrt{5}$ is also a root of the given polynomial.

$$\Rightarrow [x-(1-\sqrt{5})][x-(1+\sqrt{5})] = (x-1)^2 - 5 = x^2 - 2x - 4$$
 is a factor.

Dividing the given polynomial by this factor, we obtain the other factor as $x^2 - 3x + 2$.

Also,
$$x^2 - 3x + 2 = (x - 2)(x - 1)$$

Thus the roots of the given polynomial equation are $1+\sqrt{5},1-\sqrt{5},1,2$.

3. Find a polynomial equation of the lowest degree with rational coefficients having $\sqrt{3}$ and 1 – 2i as two of its roots.

Solution:

Since quadratic surds occur in pairs as roots, $-\sqrt{3}$ is also a root.

Since complex roots occur in conjugate pairs, 1 + 2i is also a root of the required polynomial equation. Therefore the desired equation is given by

$$(x-\sqrt{3})(x+\sqrt{3})(x-(1-2i)(x-(1+2i))=0$$

i.e., $x^4-2x^3+2x^2+6x-15=0$

4. Solve $4x^5 + x^3 + x^2 - 3x + 1 = 0$, given that it has rational roots.

Solution:

Let
$$f(x) = 4x^5 + x^3 + x^2 - 3x + 1$$
.

By theorem (1.1.5.), any rational root $\frac{p}{q}$ (in its lowest terms) must satisfy the

condition that, p is divisor of 1 and q is positive divisor of 4.

So the possible rational roots are ± 1 , $\pm \frac{1}{2}$, $\pm \frac{1}{4}$.

Note that f(-1) = 0, $f(\frac{1}{2}) = 0$. But $f(1) \neq 0$, $f(-\frac{1}{2}) \neq 0$, $f(\frac{1}{4}) \neq 0$ and $f(-\frac{1}{4}) \neq 0$.

Since f(-1) = 0 and $f(\frac{1}{2}) = 0$, we see that (x + 1) and $(x - \frac{1}{2})$ are factors of the given polynomial. Also by factorizing, we find that

$$f(x) = (x - \frac{1}{2})(x + 1)(4x^3 - 2x^2 + 4x - 2)$$

Note that $x = \frac{1}{2}$ is a root of the third factor, if we divide $4x^3 - 2x^2 + 4x - 2$ by $x - \frac{1}{2}$, we obtain $f(x) = (x - \frac{1}{2})^2 (x + 1) (4x^2 + 4)$ $= 4 (x - \frac{1}{2})^2 (x + 1) (x^2 + 1)$

Hence the roots of f(x) = 0, are $\frac{1}{2}$, $\frac{1}{2}$, -1, $\pm i$.

5. Solve $x^3 - x^2 - 8x + 12 = 0$, given that has a double root.

Solution:

Let
$$f(x) = x^3 - x^2 - 8x + 12$$

Differentiating, we obtain:

$$f^1(x) = 3x^2 - 2x - 8.$$

Since the multiple roots of f(x) = 0 are also the roots of $f^1(x) = 0$, the product of the factors corresponding to these roots will be the g.c.d of f(x) and $f^1(x)$. Let us find the g.c.d of f(x) and $f^1(x)$.

3x	$3x^2 - 2x - 8$	$x^3 - x^2 - 8x + 12$	
	$3x^2 - 6x$	3	
4	4x - 8	$3x^3 - 3x^2 - 24x + 36$	x
	4x - 8	$3x^3 - 2x^2 - 8x$	
0	0	$-x^2 - 16x + 36$	
		3	
		$-3x^2 - 48x + 108$	- 1
		$-3x^2 + 2x + 8$	
		-50 - 50x + 100	
		x - 2	
			ı

Therefore, g.c.d = (x - 2)

 \Rightarrow f(x) has a factor (x - 2)².

A1-- ((-) - (- 2)2 (- + 2)

Also,
$$f(x) = (x - 2)^2 (x + 3)$$

Thus the roots are 2, 2, -3.

6. Show that the equation $x^3 + qx + r = 0$ has two equal roots if $27r^2 + 4q^3 = 0$. Solution:

Let
$$f(x) = x^3 + qx + r$$
 ----(1)

Differentiating, we obtain: $f^1(x) = 3x^2 + q$ -----(2)

Given that f(x) = 0 has two equal roots, i.e., it has a double root, say α .

Then α is a root of both f(x) = 0 and $f^1(x) = 0$.

From the 2nd equation, we obtain $\alpha^2 = -q/3$

Now the first equation can be written as: $\alpha (\alpha^2 + q) + r = 0$

i.e.,
$$\alpha \left(-\frac{q}{3} + q\right) + r = 0 \Rightarrow \alpha = \frac{-3r}{2q}$$

Squaring and simplifying, we obtain: $27r^2 + 4q^3 = 0$